Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.475
Filtrar
1.
mBio ; 15(1): e0278523, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38063407

RESUMO

IMPORTANCE: Society uses thousands of organofluorine compounds, sometimes denoted per- and polyfluoroalkyl substances (PFAS), in hundreds of products, but recent studies have shown some to manifest human and environmental health effects. As a class, they are recalcitrant to biodegradation, partly due to the paucity of fluorinated natural products to which microbes have been exposed. Another limit to PFAS biodegradation is the intracellular toxicity of fluoride anion generated from C-F bond cleavage. The present study identified a broader substrate specificity in an enzyme originally studied for its activity on the natural product fluoroacetate. A recombinant Pseudomonas expressing this enzyme was used here as a model system to better understand the limits and effects of a high level of intracellular fluoride generation. A fluoride stress response has evolved in bacteria and has been described in Pseudomonas spp. The present study is highly relevant to organofluorine compound degradation or engineered biosynthesis in which fluoride anion is a substrate.


Assuntos
Fluoretos , Fluorocarbonos , Humanos , Pseudomonas/genética , Pseudomonas/metabolismo , Fluoracetatos/metabolismo , Biodegradação Ambiental
3.
FEBS J ; 290(20): 4966-4983, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37437000

RESUMO

Fluorine forms the strongest single bond to carbon with the highest bond dissociation energy among natural products. However, fluoroacetate dehalogenases (FADs) have been shown to hydrolyze this bond in fluoroacetate under mild reaction conditions. Furthermore, two recent studies demonstrated that the FAD RPA1163 from Rhodopseudomonas palustris can also accept bulkier substrates. In this study, we explored the substrate promiscuity of microbial FADs and their ability to defluorinate polyfluorinated organic acids. Enzymatic screening of eight purified dehalogenases with reported fluoroacetate defluorination activity revealed significant hydrolytic activity against difluoroacetate in three proteins. Product analysis using liquid chromatography-mass spectrometry identified glyoxylic acid as the final product of enzymatic DFA defluorination. The crystal structures of DAR3835 from Dechloromonas aromatica and NOS0089 from Nostoc sp. were determined in the apo-state along with the DAR3835 H274N glycolyl intermediate. Structure-based site-directed mutagenesis of DAR3835 demonstrated a key role for the catalytic triad and other active site residues in the defluorination of both fluoroacetate and difluoroacetate. Computational analysis of the dimer structures of DAR3835, NOS0089, and RPA1163 indicated the presence of one substrate access tunnel in each protomer. Moreover, protein-ligand docking simulations suggested similar catalytic mechanisms for the defluorination of both fluoroacetate and difluoroacetate, with difluoroacetate being defluorinated via two consecutive defluorination reactions producing glyoxylate as the final product. Thus, our findings provide molecular insights into substrate promiscuity and catalytic mechanism of FADs, which are promising biocatalysts for applications in synthetic chemistry and bioremediation of fluorochemicals.


Assuntos
Fluoracetatos , Hidrolases , Hidrólise , Fluoracetatos/metabolismo , Hidrolases/química
4.
Se Pu ; 41(6): 497-503, 2023 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-37259874

RESUMO

Fluoroacetic acid is a highly polar poison used for rodent control. When ingested by the human body, it seriously damages nerve cells and heart tissues and even causes death by cardiac arrest or respiratory failure. Common detection methods for fluoroacetic acid include gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry, both of which require complex pretreatment methods, such as derivatization. In this study, a method to determine fluoroacetic acid in human blood and urine based on accelerated solvent extraction-ion chromatography-mass spectrometry (ASE-IC-MS) was established. Two pretreatment methods, namely, acetonitrile precipitation and accelerated solvent extraction, were compared. Furthermore, the effects of different extraction conditions, such as the extraction time, extraction temperature, and number of cycles, were investigated. The most suitable chromatographic separation conditions, such as the chromatographic column, column temperature, and elution procedure, were determined, and the MS conditions, such as the collision energy (CE) and declustering potential (DP) of the ion pairs of the target compound, were investigated. Based on the experimental results, the optimal pretreatment methods and detection conditions were obtained, and reliable data were collected. Deionized water was used as the extraction solvent, and blood and urine samples were processed by accelerated solvent extractor. The supernatant was sequentially collected via centrifugal ultrafiltration and 0.22 µm membrane filtration, diluted 50 times, and then injected into the chromatographic column for detection. An Ion Pac AS20 IC column was used for isocratic elution with 15.0 mmol/L KOH solution as the eluent. The effluent was passed through a suppressor and into a triple quadrupole mass spectrometer, which was used to perform MS/MS (ESI-) in multiple reaction monitoring (MRM) mode. The quantitative ion was m/z 77.0>57.0 when the CE and DP were -15.0 eV and -20.0 V, respectively. An external standard method was used for quantitative analysis. The results showed a good linear relationship for fluoroacetic acid in the range of 0.5-500.0 µg/L (r>0.999), with limits of detection (LOD) and quantification (LOQ) of 0.14 and 0.47 µg/L, respectively. The recoveries of fluoroacetic acid in blood and urine were 93.4%-95.8% and 96.2%-98.4%, respectively. The intra-day RSDs for blood and urine were 0.8%-1.6% and 0.2%-1.0%, respectively, while the inter-day RSDs were 2.3%-3.8% and 3.9%-6.9%, respectively. Further investigation revealed that the matrix effects of this method in blood and urine, at -7.4% and -3.0%, respectively, were fairly weak. The established method was successfully applied to detect fluoroacetic acid in human blood and urine obtained from a poisoning case, and the results obtained provided crucial clues that led to swift case resolution. The efficiency of the method was significantly higher than that of conventional detection methods. In conclusion, the developed method has high sensitivity and good repeatability and is suitable for the rapid detection of fluoroacetic acid in human blood and urine. Moreover, because this method does not require derivatization, it is simple and efficient.


Assuntos
Fluoracetatos , Espectrometria de Massas em Tandem , Humanos , Análise Espectral , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida de Alta Pressão
5.
Environ Sci Technol ; 57(26): 9762-9772, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37341426

RESUMO

Three peptides comprising mono-, di-, and tri-fluoroethylglycine (MfeGly, DfeGly, and TfeGly) residues alternating with lysine were digested by readily available proteases (elastase, bromelain, trypsin, and proteinase K). The degree of degradation depended on the enzyme employed and the extent of fluorination. Incubation of the peptides with a microbial consortium from garden soil resulted in degradation, yielding fluoride ions. Further biodegradation studies conducted with the individual fluorinated amino acids demonstrated that the degree of defluorination followed the sequence MfeGly > DfeGly > TfeGly. Enrichment of the soil bacteria employing MfeGly as a sole carbon and energy source resulted in the isolation of a bacterium, which was identified as Serratia liquefaciens. Cell-free extracts of this bacterium enzymatically defluorinated MfeGly, yielding fluoride ion and homoserine. In silico analysis of the genome revealed the presence of a gene that putatively codes for a dehalogenase. However, the low overall homology to known enzymes suggests a potentially new hydrolase that can degrade monofluorinated compounds. 19F NMR analysis of aqueous soil extracts revealed the unexpected presence of trifluoroacetate, fluoride ion, and fluoroacetate. Growth of the soil consortium in tryptone soya broth supplemented with fluoride ions resulted in fluoroacetate production; thus, bacteria in the soil produce and degrade organofluorine compounds.


Assuntos
Bactérias , Fluoretos , Fluoretos/análise , Fluoretos/metabolismo , Bactérias/genética , Fluoracetatos/análise , Fluoracetatos/metabolismo , Peptídeos/metabolismo , Biodegradação Ambiental
6.
Chem Asian J ; 18(12): e202300219, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37115095

RESUMO

Novel boronyl borinic ester I was generated by quenching the B2 pin2 /sec BuLi-ate complex with trifluoroacetic acid anhydride (TFAA) via ring-opening in the 1,3,2-dioxaborolane moiety on ate-boron. Detailed NMR studies of the B2 pin2 /sec BuLi-ate complex in solution and in solid state allowed us to assume its oligomeric nature in solids with only ate-boron involved in the oligomerization process. The O-trifluoroacetyl pinacolate residue on borinic ester I initially formed on quenching with TFAA undergoes an unusual intramolecular transesterification with the carbonyl group of trifluoroacetyl forming othroester moiety in a few hours at r. t. to give boronyl borinic ester II. A solution of these reagents I/II was proved to be efficient for borylation of (2-fluoroallyl)pyridinium salts that are highly base sensitive.


Assuntos
Ésteres , Paládio , Ésteres/química , Paládio/química , Boro , Fluoracetatos
7.
Mol Cell Biochem ; 478(6): 1231-1244, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36282352

RESUMO

Sodium fluoroacetate (FA) is a metabolic poison that systemically inhibits the tricarboxylic acid (TCA) cycle, causing energy deficiency and ultimately multi-organ failure. It poses a significant threat to society because of its high toxicity, potential use as a chemical weapon and lack of effective antidotal therapy. In this study, we investigated cell-permeable succinate prodrugs as potential treatment for acute FA intoxication. We hypothesized that succinate prodrugs would bypass FA-induced mitochondrial dysfunction, provide metabolic support, and prevent metabolic crisis during acute FA intoxication. To test this hypothesis, rats were exposed to FA (0.75 mg/kg) and treated with the succinate prodrug candidate NV354. Treatment efficacy was evaluated based on cardiac and cerebral mitochondrial respiration, mitochondrial content, metabolic profiles and tissue pathology. In the heart, FA increased concentrations of the TCA metabolite citrate (+ 4.2-fold, p < 0.01) and lowered ATP levels (- 1.9-fold, p < 0.001), confirming the inhibition of the TCA cycle by FA. High-resolution respirometry of cardiac mitochondria further revealed an impairment of mitochondrial complex V (CV)-linked metabolism, as evident by a reduced phosphorylation system control ratio (- 41%, p < 0.05). The inhibition of CV-linked metabolism is a novel mechanism of FA cardiac toxicity, which has implications for drug development and which NV354 was unable to counteract at the given dose. In the brain, FA induced the accumulation of ß-hydroxybutyrate (+ 1.4-fold, p < 0.05) and the reduction of mitochondrial complex I (CI)-linked oxidative phosphorylation (OXPHOSCI) (- 20%, p < 0.01), the latter of which was successfully alleviated by NV354. This promising effect of NV354 warrants further investigations to determine its potential neuroprotective effects.


Assuntos
Pró-Fármacos , Ratos , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/metabolismo , Ácido Succínico/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Complexo I de Transporte de Elétrons/metabolismo , Fluoracetatos/farmacologia , Fluoracetatos/metabolismo
8.
Phytochemistry ; 202: 113356, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35934105

RESUMO

Like angiosperms from several other families, the leguminous shrub Gastrolobium bilobum R.Br. produces and accumulates fluoroacetate, indicating that it performs the difficult chemistry needed to make a C-F bond. Bioinformatic analyses indicate that plants lack homologs of the only enzymes known to make a C-F bond, i.e., the Actinomycete flurorinases that form 5'-fluoro-5'-deoxyadenosine from S-adenosylmethionine and fluoride ion. To probe the origin of fluoroacetate in G. bilobum we first showed that fluoroacetate accumulates to millimolar levels in young leaves but not older leaves, stems or roots, that leaf fluoroacetate levels vary >20-fold between individual plants and are not markedly raised by sodium fluoride treatment. Young leaves were fed adenosine-13C-ribose, 13C-serine, or 13C-acetate to test plausible biosynthetic routes to fluoroacetate from S-adenosylmethionine, a C3-pyridoxal phosphate complex, or acetyl-CoA, respectively. Incorporation of 13C into expected metabolites confirmed that all three precursors were taken up and metabolized. Consistent with the bioinformatic evidence against an Actinomycete-type pathway, no adenosine-13C-ribose was converted to 13C-fluoroacetate; nor was the characteristic 4-fluorothreonine product of the Actinomycete pathway detected. Similarly, no 13C from acetate or serine was incorporated into fluoroacetate. While not fully excluding the hypothetical pathways that were tested, these negative labeling data imply that G. bilobum creates the C-F bond by an unprecedented biochemical reaction. Enzyme(s) that mediate such a reaction could be of great value in pharmaceutical and agrochemical manufacturing.


Assuntos
Fluoretação , S-Adenosilmetionina , Fluoracetatos/química , Fluoracetatos/metabolismo , Plantas/metabolismo , Ribose , Serina
9.
J Occup Environ Hyg ; 19(7): 411-414, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35544736

RESUMO

This paper presents experimental data on the skin absorption of sodium fluoroacetate from a formulated product using an in vitro approach and human skin. Sodium fluoroacetate is a pesticide, typically applied in formulation (1080) for the control of unwanted vertebrate invasive species. It has been assigned a Skin Notation by the ACGIH, and other international workplace health regulatory bodies, due to its predicted ability to permeate intact and abraded human skin. However, there is a distinct lack of experimental data on the skin absorption of sodium fluoroacetate to support this assignment. This study found that sodium fluoroacetate, as a formulated product, permeated the human epidermis when in direct contact for greater than 10 hr. A steady-state flux (Jss) of 1.31 ± 0.043 µg/cm2/hr and a lag time of 6.1 hr was calculated from cumulative skin permeation data. This study provides important empirical evidence in support of the assignment of a Skin Notation.


Assuntos
Composição de Medicamentos , Fluoracetatos , Absorção Cutânea , Pele , Fluoracetatos/administração & dosagem , Fluoracetatos/metabolismo , Fluoracetatos/farmacocinética , Humanos , Técnicas In Vitro , Rodenticidas/administração & dosagem , Rodenticidas/metabolismo , Rodenticidas/farmacocinética , Pele/metabolismo , Fatores de Tempo
10.
BMC Urol ; 22(1): 76, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35550071

RESUMO

BACKGROUND: To assess the price range in which fexapotide triflutate (FT), a novel injectable, is cost-effective relative to current oral pharmacotherapy (5 α-reductase inhibitor, α-blocker, 5 α-reductase inhibitor and α-blocker combination therapy) as initial therapy followed by surgery for moderate-to-severe benign prostate hyperplasia patients with lower urinary tract symptoms (BPH-LUTS). METHODS: We developed a microsimulation decision-analytic model to track the progression of BPH-LUTS and associated costs and quality-adjusted life years in the target population. The cost-effectiveness analysis was performed from Medicare's perspective with a time horizon of 4 years using 2019 US dollars for all costs. The microsimulation model considered treatment patterns associated with nonadherence to oral medication and progression to surgery. Model parameters were estimated from large randomized controlled trials, literature and expert opinion. For each initial treatment option, simulations were performed with 1000 iterations, with 1000 patients per iteration. RESULTS: Three upfront oral pharmacotherapy options are close in cost-effectiveness, with combination therapy being the most cost-effective option. Relative to upfront oral pharmacotherapy options, FT slightly increases quality-adjusted life years (QALY) per patient (1.870 (95% CI, 1.868 to 1.872) vs. 1.957 (95% CI, 1.955 to 1.959) QALYs). Under the willingness-to-pay (WTP) threshold of $150,000 per QALY, at price per injection of $14,000, FT is about as cost-effective as upfront oral pharmacotherapy options with net monetary benefit (NMB) $279,168.54. Under the WTP threshold of $50,000 per QALY, at price per injection of $5,000, FT is about as cost-effective as upfront oral pharmacotherapy options with NMB $92,135.18. In an alternative 10-year time horizon scenario, FT price per injection at $11,000 and $4,500 makes FT as cost-effective as oral pharmacotherapies. One-way sensitivity analysis showed this result is most sensitive to upfront therapy prices, FT efficacy and initial IPSS. At price per injections of $5,000, $10,000 and $15,000, the probability that FT is either cost-effective or dominant compared to upfront oral pharmacotherapy options using a WTP threshold of $150,000 per QALY is 100%, 93% and 40%, respectively. CONCLUSIONS: Compared to upfront oral pharmacotherapy options, FT would be cost-effective at a price per injection below $14,000, assuming a WTP threshold of $150,000 per QALY.


Assuntos
Hiperplasia Prostática , Idoso , Colestenona 5 alfa-Redutase , Análise Custo-Benefício , Fluoracetatos , Humanos , Hiperplasia , Masculino , Medicare , Peptídeos , Próstata , Hiperplasia Prostática/cirurgia , Estados Unidos
11.
Mol Psychiatry ; 27(3): 1683-1693, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35027678

RESUMO

The fundamental role of epigenetic regulatory mechanisms involved in neuroplasticity and adaptive responses to traumatic brain injury (TBI) is gaining increased recognition. TBI-induced neurodegeneration is associated with several changes in the expression-activity of various epigenetic regulatory enzymes, including histone deacetylases (HDACs). In this study, PET/CT with 6-([18F]trifluoroacetamido)-1- hexanoicanilide ([18F]TFAHA) to image spatial and temporal dynamics of HDACs class IIa expression-activity in brains of adult rats subjected to a weight drop model of diffuse, non-penetrating, mild traumatic brain injury (mTBI). The mTBI model was validated by histopathological and immunohistochemical analyses of brain tissue sections for localization and magnitude of expression of heat-shock protein-70 kDa (HSP70), amyloid precursor protein (APP), cannabinoid receptor-2 (CB2), ionized calcium-binding adapter protein-1 (IBA1), histone deacetylase-4 and -5 (HDAC4 and HDAC5). In comparison to baseline, the expression-activities of HDAC4 and HDAC5 were downregulated in the hippocampus, nucleus accumbens, peri-3rd ventricular part of the thalamus, and substantia nigra at 1-3 days post mTBI, and remained low at 7-8 days post mTBI. Reduced levels of HDAC4 and HDAC5 expression observed in neurons of these brain regions post mTBI were associated with the reduced nuclear and neuropil levels of HDAC4 and HDAC5 with the shift to perinuclear localization of these enzymes. These results support the rationale for the development of therapeutic strategies to upregulate expression-activity of HDACs class IIa post-TBI. PET/CT (MRI) with [18F]TFAHA can facilitate the development and clinical translation of unique therapeutic approaches to upregulate the expression and activity of HDACs class IIa enzymes in the brain after TBI.


Assuntos
Concussão Encefálica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Anilidas , Animais , Epigênese Genética , Fluoracetatos , Histona Desacetilases/metabolismo , Ratos
12.
Mol Imaging ; 2021: 7545284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34934405

RESUMO

Developing sensitive diagnostic methods for a longitudinal evaluation of the status of liver fibrosis is a priority. This study is aimed at assessing the significance of longitudinal positron emission tomography (PET) imaging with 18F-labeling tracers for assessing liver fibrosis in a rat model with bile duct ligation (BDL). Twenty-one 6-week-old Sprague-Dawley male rats were used in this study. Longitudinal PET images using [18F]N-2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide ([18F]FEPPA) (n = 3), [18F]fluoroacetate ([18F]FAc) (n = 3), and 18F-fluoro-2-deoxy-D-glucose ([18F]FDG) (n = 3) were obtained at 0, 1, and 2 weeks after BDL. Biochemical assays, histological assays, immunohistochemical staining assays, and next generation sequencing analyses were also performed at 0 (n = 3), 1 (n = 3), 2 (n = 3), and 3 (n = 3) weeks after BDL, which demonstrated the severe damage in rat livers after BDL. Regarding [18F]FEPPA and [18F]FDG, there was a significantly higher uptake in the liver after BDL (both P < 0.05), which lasted until week 2. However, the uptake of [18F]FAc in the liver was not significantly different before and after BDL (P = 0.28). Collectively, both [18F]FEPPA and [18F]FDG can serve as sensitive probes for detecting the liver fibrosis. However, [18F]FAc is not recommended to diagnose liver fibrosis.


Assuntos
Fluordesoxiglucose F18 , Cirrose Hepática , Animais , Ductos Biliares/diagnóstico por imagem , Ductos Biliares/patologia , Fluoracetatos , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Masculino , Ratos , Ratos Sprague-Dawley
13.
Sci Rep ; 11(1): 23379, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862448

RESUMO

A pathogen inactivation step during collection or processing of clinical samples has the potential to reduce infectious risks associated with diagnostic procedures. It is essential that these inactivation methods are demonstrated to be effective, particularly for non-traditional inactivation reagents or for commercial products where the chemical composition is undisclosed. This study assessed inactivation effectiveness of twenty-four next-generation (guanidine-free) nucleic acid extraction lysis buffers and twelve rapid antigen test buffers against SARS-CoV-2, the causative agent of COVID-19. These data have significant safety implications for SARS-CoV-2 diagnostic testing and support the design and evidence-based risk assessment of these procedures.


Assuntos
Antivirais/farmacologia , Teste Sorológico para COVID-19/métodos , SARS-CoV-2/efeitos dos fármacos , Acetamidas , Soluções Tampão , COVID-19/diagnóstico , COVID-19/virologia , Fluoracetatos , Guanidina/efeitos adversos , Humanos , Inativação de Vírus/efeitos dos fármacos
14.
J Am Chem Soc ; 143(47): 19648-19654, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793157

RESUMO

The installation of gem-difluoromethylene groups into organic structures remains a daunting synthetic challenge despite their attractive structural, physical, and biochemical properties. A very efficient retrosynthetic approach would be the functionalization of a single C-F bond from a trifluoromethyl group. Recent advances in this line of attack have enabled the C-F activation of trifluoromethylarenes, but limit the accessible motifs to only benzylic gem-difluorinated scaffolds. In contrast, the C-F activation of trifluoroacetates would enable their use as a bifunctional gem-difluoromethylene synthon. Herein, we report a photochemically mediated method for the defluorinative alkylation of a commodity feedstock: ethyl trifluoroacetate. A novel mechanistic approach was identified using our previously developed diaryl ketone HAT catalyst to enable the hydroalkylation of a diverse suite of alkenes. Furthermore, electrochemical studies revealed that more challenging radical precursors, namely trifluoroacetamides, could also be functionalized via synergistic Lewis acid/photochemical activation. Finally, this method enabled a concise synthetic approach to novel gem-difluoro analogs of FDA-approved pharmaceutical compounds.


Assuntos
Acetamidas/química , Ésteres/síntese química , Fluoracetatos/química , Alcenos/química , Alquilação , Catálise/efeitos da radiação , Cetonas/química , Cetonas/efeitos da radiação , Estrutura Molecular
15.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445342

RESUMO

Epigenetic regulation by histone deacetylase (HDAC) is associated with synaptic plasticity and memory formation, and its aberrant expression has been linked to cognitive disorders, including Alzheimer's disease (AD). This study aimed to investigate the role of class IIa HDAC expression in AD and monitor it in vivo using a novel radiotracer, 6-(tri-fluoroacetamido)-1-hexanoicanilide ([18F]TFAHA). A human neural cell culture model with familial AD (FAD) mutations was established and used for in vitro assays. Positron emission tomography (PET) imaging with [18F]TFAHA was performed in a 3xTg AD mouse model for in vivo evaluation. The results showed a significant increase in HDAC4 expression in response to amyloid-ß (Aß) deposition in the cell model. Moreover, treatment with an HDAC4 selective inhibitor significantly upregulated the expression of neuronal memory-/synaptic plasticity-related genes. In [18F]TFAHA-PET imaging, whole brain or regional uptake was significantly higher in 3xTg AD mice compared with WT mice at 8 and 11 months of age. Our study demonstrated a correlation between class IIa HDACs and Aßs, the therapeutic benefit of a selective inhibitor, and the potential of using [18F]TFAHA as an epigenetic radiotracer for AD, which might facilitate the development of AD-related neuroimaging approaches and therapies.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Inibidores de Histona Desacetilases/farmacocinética , Histona Desacetilases/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Anilidas/química , Anilidas/farmacocinética , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/fisiologia , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Fluoracetatos/química , Fluoracetatos/farmacocinética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/química , Histona Desacetilases/classificação , Histona Desacetilases/genética , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Células Tumorais Cultivadas
16.
ACS Sens ; 6(6): 2129-2135, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34080834

RESUMO

Rapid screening monofluoroacetic acid (FAcOH) is responsible for preventing chemical poisoning and food safety events. Whereas surface enhanced Raman scattering (SERS) spectra is an effective tool for detecting forbidden chemicals, it is difficult to directly detect FAcOH due to its small Raman scattering cross section as well as weak adsorption on SERS substrates. In this work, the metal phenolic supramolecular networks (MPNs, i.e., the tannic acid and Fe3+ complex) were fabricated on the commercial nanoanodic aluminum oxide film (NAAO) for assisting in situ chemical deposition highly uniform Ag nanostructure over large areas (the NAAO@AgNS). The low cost and simple fabrication process made the NAAO@AgNS a single-use consumable. For FAcOH detection, a specific derivative reaction between FAcOH and thiosalicylic acid (TSA) was introduced. By taking TSA as the Raman probe, its SERS signal attenuated constantly with the increasing amount of FAcOH. For improving quantitative accuracy, thiocyanate (SCN-) was introduced on the NAAO@AgNS as an internal standard; thus, the characteristic peak intensity ratios associated with TSA and SCN- (I1035/I2125) were fitted to the concentration of FAcOH. It was demonstrated that the SERS assay achieved good sensitivity and selection toward FAcOH with the limit of quantitation (LOD) as low as 50 nmol L-1. The NAAO@AgNS featured with highly sensitive, uniform, and consistent SERS performances could easily extend to wide SERS applications.


Assuntos
Nanoestruturas , Prata , Óxido de Alumínio , Fluoracetatos
17.
Molecules ; 26(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802864

RESUMO

The aim and novelty of this paper are found in assessing the influence of inhibitors and antibiotics on intact cell MALDI-TOF mass spectra of the cyanobacterium Synechococcus sp. UPOC S4 and to check the impact on reliability of identification. Defining the limits of this method is important for its use in biology and applied science. The compounds included inhibitors of respiration, glycolysis, citrate cycle, and proteosynthesis. They were used at 1-10 µM concentrations and different periods of up to 3 weeks. Cells were also grown without inhibitors in a microgravity because of expected strong effects. Mass spectra were evaluated using controls and interpreted in terms of differential peaks and their assignment to protein sequences by mass. Antibiotics, azide, and bromopyruvate had the greatest impact. The spectral patterns were markedly altered after a prolonged incubation at higher concentrations, which precluded identification in the database of reference spectra. The incubation in microgravity showed a similar effect. These differences were evident in dendrograms constructed from the spectral data. Enzyme inhibitors affected the spectra to a smaller extent. This study shows that only a long-term presence of antibiotics and strong metabolic inhibitors in the medium at 10-5 M concentrations hinders the correct identification of cyanobacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF).


Assuntos
Antibacterianos/toxicidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Synechococcus/química , Synechococcus/efeitos dos fármacos , Antimicina A/análogos & derivados , Antimicina A/toxicidade , Azidas/toxicidade , Respiração Celular/efeitos dos fármacos , Cloranfenicol/toxicidade , Ciclo do Ácido Cítrico/efeitos dos fármacos , Desoxiglucose/toxicidade , Fluoracetatos/toxicidade , Glicólise/efeitos dos fármacos , Malonatos/toxicidade , Biossíntese de Proteínas/efeitos dos fármacos , Piruvatos/toxicidade , Reprodutibilidade dos Testes , Estreptomicina/toxicidade , Synechococcus/isolamento & purificação , Synechococcus/metabolismo , Ausência de Peso
18.
J Chromatogr A ; 1646: 462096, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33878620

RESUMO

In the past years, the technology for trace residue analysis of plant protection compounds in plant and animal matrices, soil, and water has gradually changed to meet changing regulatory demands. Generally, from the '70s to the '90s of the last century, the active compounds and only a few major metabolites had to be determined in a typical "residue definition". Step by step and within the framework of product safety assessments of the enforcement of residues in dietary matrices and in the environment, further metabolites have come into the authorities focus. Many active substances were formerly determined via gas chromatography (GC) based detection techniques. The introduction of liquid chromatography tandem mass spectrometry (LC-MS/MS) technology in the '90s and the acceptance of this technique, by official bodies at the end of the '90s, has led to a major change for residue analytical laboratories all over the world. Most of the medium to non-polar active compounds as well as many of the more polar metabolites can be detected with this technique, and today LC-MS/MS is the "workhorse" in many residue analytical laboratories in the industry as well as official enforcement labs responsible for analyzing registration-related field studies. With the demand to analyze further breakdown products, more and more polar compounds, or even (permanently) charged target compounds, have now come into the focus of the registration authorities. This now brings standard LC-based techniques to their limits and requires the application of approaches such as hydrophilic interaction chromatography (HILIC) MS/MS or ion chromatography, however these techniques often incur related uncertainties and problems with matrix samples. The aim of this study was to develop a new CE-MS/MS-based approach to reduce the impact of matrix on the separation and detection of trifluoroacetic acid (TFA) and difluoroacetic acid (DFA) in agrochemical field trials. This project used 7 representative examples of fruit, grain and vegetables which had undergone homogenization and extraction with acetonitrile water and filtration before CE-MS/MS analysis. The CE-MS/MS developed reached the limit of quantitation (LOQ) requirement of current legislation for both TFA and DFA (0.01 mg/kg) in all 7 matrices tested. The mean relative standard deviation (RSD) obtained from the repeat analysis of control field trail samples in all matrices, for both TFA and DFA, was less than 10% meeting GLP guidelines. When compared with LC-MS/MS, using on column loading amounts, the CE-MS/MS was 17 - 43 times more sensitive than a standard method and less matrix effects were observed. The developed method was validated under GLP conditions to provide a GLP-validated residue analytical method for the charged metabolites TFA and DFA in matrix samples from GLP field residue trials.


Assuntos
Eletroforese Capilar/métodos , Fluoracetatos/análise , Resíduos de Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Ácido Trifluoracético/análise , Animais , Grão Comestível/química , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Interações Hidrofóbicas e Hidrofílicas , Verduras
19.
Int J Biol Macromol ; 180: 80-87, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33722621

RESUMO

Hydrophobization of cellulosic materials and particularly paper products is a commonly used procedure to render papers more resistant to water and moisture. Here, we explore the hydrophobization of unsized paper sheets via the gas phase. We employed three different compounds, namely palmitoyl chloride (PCl), trifluoroacetic anhydride/acetic anhydride (TFAA/Ac2O)) and hexamethyldisilazane (HMDS) which were vaporized and allowed to react with the paper sheets via the gas phase. All routes yielded hydrophobic papers with static water contact angles far above 90° and indicated the formation of covalent bonds. The PCl and TFAA approach negatively impacted the mechanical and optical properties of the paper leading to a decrease in tensile strength and yellowing of the sheets. The HMDS modified papers did not exhibit any differences regarding relevant paper technological parameters (mechanical properties, optical properties, porosity) compared to the non-modified sheets. XPS studies revealed that the HMDS modified samples have a rather low silicon content, pointing at the formation of submonolayers of trimethylsilyl groups on the fiber surfaces in the paper network. This was further investigated by penetration dynamic analysis using ultrasonication, which revealed that the whole fiber network has been homogeneously modified with the silyl groups and not only the very outer surface as for the PCl and the TFAA modified papers. This procedure yields a possibility to study the influence of hydrophobicity on paper sheets and their network properties without changing structural and mechanical paper parameters.


Assuntos
Celulose/química , Papel , Água/química , Molhabilidade , Anidridos Acéticos/química , Fluoracetatos/química , Compostos de Organossilício/química , Palmitatos/química , Espectroscopia Fotoeletrônica , Porosidade , Espectrofotometria Infravermelho , Resistência à Tração , Ondas Ultrassônicas , Volatilização
20.
Medicine (Baltimore) ; 100(9): e25053, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33655984

RESUMO

RATIONALE: With the easy access, rodenticide poisoning has been a public health problem in many countries. Characteristics of central nervous system (CNS) lesions induced by rodenticides are scarcely reported. PATIENT CONCERNS: We presented a case of a 40-year-old man with seizure and consciousness disorder, coagulation dysfunction, and symmetric lesions in white matter and corpus callosum. DIAGNOSIS: He was diagnosed with rodenticide poisoning due to bromadiolone and fluoroacetamide. INTERVENTIONS: He was treated with vitamin K, hemoperfusion, acetamide, and calcium gluconate. OUTCOMES: His leukoencephalopathy was reversed rapidly with the improvement of clinical symptoms. LESSONS: This report presented the impact of rodenticide poisoning on CNS and the dynamic changes of brain lesions, and highlighted the importance of timely targeted treatments.


Assuntos
4-Hidroxicumarinas/envenenamento , Coagulação Sanguínea/efeitos dos fármacos , Fluoracetatos/envenenamento , Leucoencefalopatias/induzido quimicamente , Adulto , Humanos , Leucoencefalopatias/sangue , Masculino , Rodenticidas/envenenamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...